• Mark your calendars! Fall 2024 release schedule of Virtual Field Trips and our first-ever DE Doc is here!

Shifting Traditional Science Instruction to Interactive Student Sensemaking

Written by Ted Willard, contributing author of Discovery Education Science Techbook

The traditional way science has been taught has not been efficient or effective. By shifting to student centered learning, we can spark students’ curiosity and motivate them to figure out for themselves why things happen and how the world works. This is called student sensemaking. We set up the learning experience so that students engage in sensemaking and teachers are empowered with the tools to shift their instruction to support it.

Share With Your Colleagues

What Does Student Sensemaking Look Like?

We want to shift away from the traditional science lecture and examples approach to encouraging students to figure things out for themselves. For example, instead of telling students what Newton’s third law is, I might show the class a cannon being fired and ask if they noticed that as the cannonball goes flying off, the cannon itself shifts. Why is it that the cannon shifts? Why does it recoil? What’s going on here? I would try to get students to notice this, ask questions and wonder why the recoil happened.

As students investigate the cannonball/cannon example, they will eventually figure out that when the cannon pushes on the cannonball, the cannonball also pushes on the cannon, and that is Newton’s third law. So, by stimulating the student’s curiosity about the cannon’s recoil, I now have them interested in learning Newton’s third law. With student sensemaking, the teacher’s job is still to get students to learn things, but the job of the student is to observe and figure out phenomena like the one above.

As students make sense of phenomena—an observable fact or occurrence—they are actively engaged throughout the process. They are asking their own questions, deciding what they need to investigate, collecting and analyzing data. And more importantly, they actually go and think about the situation to develop a formal explanation and a model of what’s going on with the phenomenon or lesson.

See how the all-new Discovery Education Science Techbook can help educators deliver 3D instruction in person or at a distance.

Helping Students Make Sense of Phenomena

If the pivot from learning about science ideas to figuring out phenomena is the first big shift, then engaging in practices is the second big shift, because the way that students figure out phenomena is by engaging in the following Science and Engineering Practices.

  1. Asking questions and defining problems
  2. Developing and using models
  3. Planning and carrying out investigations
  4. Analyzing and interpreting data
  1. Using mathematics and computational thinking
  2. Constructing explanations and designing solutions
  3. Engaging in argument from evidence
  4. Obtaining, evaluating, and communicating information

Scientists ask questions, develop models, carry out investigations, analyze data, and construct explanations, which is why the eight Science and Engineering Practices represent more accurate descriptions of the process. They provide more of an intellectual toolbox to pick and choose from as different situations present themselves.

For example, if we are presented with a new phenomenon:

  • We might come up with some questions about the phenomenon.
  • We start trying to construct an explanation about it.
  • We need to conduct an investigation and gather some data in order to answer those questions and check the accuracy of that explanation.
  • As a result of that investigation, we have some data to analyze.
  • But that data raises some new questions, so now we will want to make a model of the phenomenon and perform a new investigation.

In the past, we have rarely asked students to engage in all of these practices, particularly the three that are more foundational to student sensemaking: developing models, engaging in arguments through evidence, and constructing explanations and designing solutions. Those are three practices that are often lost in the mix.

Implementing Phenomena-Driven, Standards-Based Science Instruction

The Discovery Education Science program uses phenomena in two ways:
  • Anchor Phenomena is designed to make students wonder about things and ask a lot of questions. These become driving questions that fuel learning while motivating students to chase their curiosity and to learn new things or seek answers to other real-life challenges and mysteries.
  • Investigative Phenomena are used for gathering evidence and answering questions presented by the Anchor Phenomena.
The power of phenomena, when presented correctly by the teacher or curriculum, acts like breadcrumbs that guide kids to where we need them need to be. Discovery Education Science Techbook is designed to stack the deck in such a way that students are making decisions every step of the way about what to do, but we have set things up so that the choice they make leads them in the direction we want them to take. That’s where the real curriculum design comes into play—of setting that up, thinking the way a student thinks, knowing what they are going to focus on, and providing the tools and support teachers need to introduce sensemaking practices to students and guide them toward science success.

Find more resources and strategies that support a culture of student sensemaking with the all-new Discovery Education Science Techbook.

Ted Willard

Ted Willard is a nationally recognized science standards expert working with Discovery Education on developing curriculum that supports the NGSS and other standards based on the Framework of K-12 Science Education.